The Hermitian Connection and the Jacobi Fields of a Complex Finsler Manifold
نویسنده
چکیده
It is proved that all invariant functions of a complex Finsler manifold can be totally recovered from the torsion and curvature of the connection introduced by Kobayashi for holomorphic vector bundles with complex Finsler structures. Equations of the geodesics and Jacobi fields of a generic complex Finsler manifold, expressed by means Kobayashi’s connection, are also derived.
منابع مشابه
Some vector fields on a riemannian manifold with semi-symmetric metric connection
In the first part of this paper, some theorems are given for a Riemannian manifold with semi-symmetric metric connection. In the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. We obtain some properties of this manifold having the vectors mentioned above.
متن کاملOn R−complex Finsler spaces
In the present paper we submit for study a new class of Finsler spaces. Through restricting the homogeneity condition from the definition of a complex Finsler metric to real scalars, λ ∈ R, is obtained a wider class of complex spaces, called by us the R−complex Finsler spaces. Two subclasses are taken in consideration: the Hermitian and the non-Hermitian R−complex Finsler spaces. In an R−comple...
متن کاملRelating the curvature tensor and the complex Jacobi operator of an almost Hermitian manifold
Let J be a unitary almost complex structure on a Riemannian manifold (M, g). If x is a unit tangent vector, let π := Span{x, Jx} be the associated complex line in the tangent bundle of M . The complex Jacobi operator and the complex curvature operators are defined, respectively, by J (π) := J (x) + J (Jx) and R(π) := R(x, Jx). We show that if (M, g) is Hermitian or if (M,g) is nearly Kähler, th...
متن کاملACTA UNIVERSITATIS APULENSIS No 18/2009 ON VECTOR-BUNDLE VALUED COHOMOLOGY ON COMPLEX FINSLER MANIFOLDS
In this paper we define a complex adapted connection of type Bott on vertical bundle of a complex Finsler manifold. When this connection is flat we get a vertical vector valued cohomology. The notions are introduced by analogy with the real case for foliations. Finally, using the partial Bott connection we give a characterization of strongly Kähler-Finsler manifolds. 2000 Mathematics Subject Cl...
متن کامل1 O ct 1 99 3 Complex Finsler metrics by Marco Abate and
A complex Finsler metric is an upper semicontinuous function F : T 1,0 M → R + defined on the holomorphic tangent bundle of a complex Finsler manifold M , with the property that F (p; ζv) = |ζ|F (p; v) for any (p; v) ∈ T 1,0 M and ζ ∈ C. Complex Finsler metrics do occur naturally in function theory of several variables. The Kobayashi metric introduced in 1967 ([K1]) and its companion the Carath...
متن کامل